
Weaknesses in Bitcoin’s Merkle Root

Construction

February 25, 2019

Abstract

Bitcoin block headers include a commitment to the set of transactions in a given
block, which is implemented by constructing a Merkle tree of transaction id’s
(double-SHA256 hash of a transaction) and including the root of the tree in the
block header. This in turn allows for proving to a Bitcoin light client that a
given transaction is in a given block by providing a path through the tree to the
transaction. However, Bitcoin’s particular construction of the Merkle tree has
several security weaknesses, including at least two forms of block malleability
that have an impact on the consensus logic of Bitcoin Core, and an attack on
light clients, where an invalid transaction could be ”proven” to appear in a block
by doing substantially less work than a SHA256 hash collision would require.

Credits

Several people have reported some of the issues described in this summary,
including Sergio Lerner and Peter Todd on the bitcoin-dev mailing list. The
summary presented here is based on private IRC conversations between Johnson
Lau and Greg Maxwell. I believe some of the observations discussed in section
3 were originally made by Luke Dashjr.

1 Background

1.1 Merkle Root Construction

As a reminder, the Merkle root construction used by Bitcoin involves starting
with the double SHA256 hash H of each transaction1 as the leaf nodes in a tree.
We construct a parent node for each pair of consecutive leaves by concatenating
the leaves and double-SHA256 hashing the result. Importantly, if there are an
odd number of leaves at a level in the tree, the final element is duplicated, so

1In this document we will only be discussing the Merkle root value in the block header, for
which transactions are serialized for hashing without their witnesses.

1

that the parent node will be the hash of the child node concatenated with itself.
For example, if a block had three transactions, the construction is as follows:

Merkle root

Node2

emptyH(Tx3)

Node1

H(Tx2)H(Tx1)

Here, Node1 is calculated as H(H(Tx1)||H(Tx2)), and Node2 is calculated as
H(H(Tx3)||H(Tx3)). Finally, the Merkle root is calculated to be
H(Node1||Node2), and that is what appears in the block header.

If a block consists of only a single transaction, then the Merkle root will be
the hash of the single transaction. Note that every valid block must have at
least one transaction.

1.2 Block validity in Bitcoin Core

Bitcoin Core’s consensus logic breaks up block validation into several parts and
tracks the validity of a given block through those stages. For example, when a
new block header is processed (typically before the block itself is even received),
the header is checked for validity under the network’s consensus rules. When the
block later arrives, the block is also processed in stages, as context-free checks
(which don’t depend on any other blocks or headers) are checked first, followed
by the checks that are dependent on the headers chain that the block is part of,
and finally finishing with checks on the transactions and their signatures, if the
block appears to be part of the most-work headers chain.

Associated with each stored block header is a cached value that tracks how
far through validation the associated block has progressed. If a block is dis-
covered to be invalid, Bitcoin Core stores the invalid status of that block per-
manently, and will avoid reprocessing that block or any descendants of that
block.

In the following sections we’ll discuss the concerns around permanently
marking blocks as invalid in order to prevent an attacker from using this opti-
mization to split the network.

2

2 Duplicate transactions, CVE-2012-2459

This is documented in the Bitcoin Core source code:

/* WARNING! If you’re reading this because you’re learning about crypto

and/or designing a new system that will use merkle trees, keep in mind

that the following merkle tree algorithm has a serious flaw related to

duplicate txids, resulting in a vulnerability (CVE-2012-2459).

The reason is that if the number of hashes in the list at a given time

is odd, the last one is duplicated before computing the next level (which

is unusual in Merkle trees). This results in certain sequences of

transactions leading to the same merkle root. For example, these two

trees:

A A

/ \ / \

B C B C

/ \ | / \ / \

D E F D E F F

/ \ / \ / \ / \ / \ / \ / \

1 2 3 4 5 6 1 2 3 4 5 6 5 6

for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and

6 are repeated) result in the same root hash A (because the hash of both

of (F) and (F,F) is C).

The vulnerability results from being able to send a block with such a

transaction list, with the same merkle root, and the same block hash as

the original without duplication, resulting in failed validation. If the

receiving node proceeds to mark that block as permanently invalid

however, it will fail to accept further unmodified (and thus potentially

valid) versions of the same block. We defend against this by detecting

the case where we would hash two identical hashes at the end of the list

together, and treating that identically to the block having an invalid

merkle root. Assuming no double-SHA256 collisions, this will detect all

known ways of changing the transactions without affecting the merkle

root.

*/

In the next section we’ll discuss a new form of block malleability that was
unknown at the time the above comment was written.

3 Weaknesses resulting from Merkle tree ambi-
guities

Greg Maxwell has pointed out (in private IRC communications) that a source
of weakness arises from a ”lack of domain separation between nodes and leaves”
in the Merkle tree. A non-leaf node in a Merkle tree is the hash of a 64-byte
input, which is the concatenation of the node’s children. Meanwhile, a leaf-node

3

is the hash of a transaction (serialized without its witness). If a transaction’s
serialization (without witness) can be 64 bytes, the inability to distinguish a
leaf-node from a non-leaf node can expose security concerns.

3.1 Block malleability

Consider a block B with 2 transactions. The Merkle root is calculated as follows:

Root

H(Tx2)H(Tx1)

And consider a block with 1 transaction. The Merkle root for that would
just be H(Tx1).

Suppose a peer relays the block header for B but claims that B has only
one transaction, not two, and that the one transaction T in the block has the
serialization H(Tx1)||H(Tx2). If T successfully deserializes into a transaction2

(and canonically reserializes to H(Tx1)||H(Tx2)), then the hash of T will match
the Merkle root in the block header. If T is invalid, then the node that receives
this version of block B will reject it as invalid. However, if the receiving node
permanently marks this block hash as invalid, then it will never process or accept
as valid block B, even if transmitted with two transactions from an honest peer.
This could be used to cause a node to drop out of consensus.

This generalizes to a block with N transactions by an attacker claiming
that the block actually has N/2k transactions, consisting of a set of 64-byte
”transactions” that come from some other row k in the Merkle tree. If those
64-byte values all successfully deserialize as transactions (and hence can be
communicated), then a peer receiving the block must not permanently mark
the block hash as invalid, even if those 64-byte transactions are invalid.

3.1.1 How much work is required to produce a 2-transaction block
such that the Merkle root is the hash of a 64-byte input that
deserializes as a transaction?

Transactions are serialized as follows:

[version][vin][vout][locktime]

The version and locktime are both 4-byte fields, which have no deserialization
requirements. The vin and vout serializations look like this:

[|vin|][vin0]...[vinn]

2Note that any block – malleated or not – can only be considered by a node if it can be
communicated, which means that the message must be able to be deserialized according to the
message processing rules of the network. Messages that cannot be understood are discarded.

4

and
[|vout|][vout0]...[voutn]

Where the size of vin is encoded using Bitcoin’s ”compact size”. Since each
vin contains a 32-byte prevout hash, and we want to create 64 bytes that will
deserialize successfully as a transaction, we constrain |vin| to 1, which encodes
as the one byte, 0x01. Each vini consists of:

[hash][index][scriptSig][sequence]

where hash is a 32-byte prevout hash, and index is a 4-byte index into the vout
vector of the transaction referenced by the prevout hash. Valid coinbases must
have a null prevout hash and index set to 0xffffffff, but invalid coinbase
transactions are unconstrained in these values.

The scriptsig is encoded with a length followed by the script, so there’s
a constraint that the length matches the number of bytes read. For now, we
assume an empty scriptSig, which has a 1-byte encoding of 0x00.

The sequence is 4 bytes and not constrained.
The size of the vout array is again encoded with a length, which will need

to be respected for the serialization to be valid, so we constrain the vout size to
be 1, which introduces one more fixed byte 0x01. The serialization of the rest
of the vout vector is as follows:

[amount][scriptPubKey]

where amount is an 8-byte quantity, and scriptPubKey, like scriptSig, has a
length encoding, which imposes a 1-byte constraint.

Summing this all up, a 64-byte transaction that successfully deserializes
could be constructed like this:

?? ?? ?? ?? 01 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

A B C

?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ?? ?? 00 ?? ?? ?? ?? 01 ??

D E F G H

?? ?? ?? ?? ?? ?? ?? 04 ?? ?? ?? ?? ?? ?? ?? ??

I J K

A = version (4 bytes, unconstrained)

B = #vin (1 byte, constrained)

C = prevout txid (32 bytes, unconstrained)

D = prevout index (4 bytes, unconstrained)

E = scriptSig (1 byte, constrained)

F = sequence (4 bytes, unconstrained)

G = #vout (1 byte, constrained)

H = amount (8 bytes, unconstrained)

5

I = length(scriptPubKey) (1 byte, constrained)

J = remainder of scriptPubKey (4 bytes, unconstrained)

K = locktime (4 bytes, unconstrained)

Here, we’ve set the scriptPubKey in vout0 to be 5 total bytes, so that
the transaction is 64-bytes long, and only one of those bytes is constrained for
successful deserialization (the length encoding). But looking at this in total, we
can see that we actually just require the sum of the length of the scriptPubKey
and the length of the scriptSig is 4.

Note also that only four of the 64 bytes here are constrained, and they appear
in different halves of the transaction. So to produce a block that has a Merkle
root which is a hash of a 64-byte quantity that deserializes validly, it’s enough
to just do 8 bits of work to find a workable coinbase (which will hash to the first
32 bytes), plus another ≈ 22 bits of work ((1/5) ∗ 224, so slightly less) to find
a workable second transaction which will hash to the second 32 bytes) – a very
small amount of computation.

3.1.2 How much work is required to produce a block such that some
row of the Merkle tree consists of 64-byte quantities that de-
serialize as VALID transactions?

Note that the first transaction in a block must be a coinbase, and as discussed
above, that largely constrains the first 32 bytes of the first transaction: only
the 4 version bytes are unconstrained. So it would take at least 28*8= 224 bits
of work to find the first node in a given row of the tree that would match the
first half of a coinbase, in addition to the amount of work required to grind the
second half of the transaction to something meaningful (which is much easier –
only 16 bytes or so are constrained, so approximately 128 bits of work to find
a collision). Of course, any of the rows in the Merkle tree could be used, but it
nevertheless seems clear that this should be computationally infeasible.

3.2 Attacks on SPV (light) clients

SPV clients expect to be able to receive proofs that a given transaction appears
in a given block. The nature of the proof is to provide the client with a path
through the Merkle tree, from the root down to the transaction.

Going down the Merkle tree However, suppose a (valid) 64-byte transac-
tion T is included in a block with the property that the second 32 bytes (which
are less constrained than the first 32 bytes) are constructed so that they collide
with the hash of some other fake, invalid transaction F . Let R be the Merkle
root, so that we have:

R = H(H(H(...H(T)||H(...)...)

T = [32bytes]||[H(F)]

6

If such a construction is possible, then a node could fool an SPV client
into thinking that F is in the block by providing a path down to T , and then
treating T as an interior node in the tree. Because the number of transactions
in a block is not in the block header, SPV clients do not a priori know how
many transactions are in the block, or, therefore, the correct depth of the tree.

3.2.1 How much work is required to produce a valid 64-byte trans-
action such that its lower 32 bytes collide with the hash of
some other transaction?

Note Sergio Lerner [1] has published a separate analysis that this can be done
in 72 bits of work; Peter Todd [2] has also published an analysis that claims this
can be done with 60 bits of work.

From the diagram earlier, we know the first 32 bytes of the transaction are
largely constrained, consisting mostly of the prevout being spent, which must
be valid. Instead, we focus on the second 32 bytes:

?? ?? ?? ?? ?? 00 ?? ?? ?? ?? 01 ..

C D E F G H

.. .. .? ?? ?? ?? ?? 04 ?? ?? ?? ?? .? ?? ?? ??

I J K

C = prevout txid (remaining 5 bytes of the txid, unconstrained)

D = prevout index (4 bytes, 21 bits constrained)

E = scriptSig (1 byte, constrained)

F = sequence (4 bytes, unconstrained if tx version=1)

G = #vout (1 byte, constrained)

H = amount (8 bytes, ~33 bits are constrained, see below)

I = length(scriptPubKey) (1 byte, constrained)

J = remainder of scriptPubKey (4 bytes, unconstrained)

K = locktime (4 bytes, ~29 bits are unconstrained, see below)

We can assume the prevout txid bits are unconstrained, because once we
have a candidate transaction, we can just separately do 40-bits of work to find
an input with the appropriate last 5 bytes of txid. Similarly, we can partially
constrain the prevout index, by only requiring it be no more than, say, 2048, as
we can assume the ability to create a 2048-output transaction with the appro-
priate amount in the appropriate output index.

We can assume sequence is unconstrained, because that field has no consen-
sus meaning for version 1 transactions. Since we’re assuming the high 32 bytes
of the transaction are fixed, we can assume that the version is set to 1.

The amount is an 8 byte field. If an attacker has access to a lot of funds, then
that permits more values of the amount to be unconstrained, as the consensus
constraint is that the output value is less than or equal to the input value.
However, as the funds spent in this transaction will be anyone-can-spend (or
nobody-can-spend), the funds used in this attack would likely be lost (if the

7

attacker were also a miner, then they could attempt to recover the funds by
respending in the same block, though there is a risk another miner could orphan
the block to steal the fees and anyone-can-spend outputs). Moreover, if we
assume the funds would be lost, then we have to weigh the cost of this attack
with other attacks that could be performed, such as just mining a few invalid
blocks and using those to attack a light client (note however that the nature of
the attack is different, as this attack would allow fooling a light client about a
fake transaction that would appear to be confirmed arbitrarily deep in the chain
– this could be much more valuable than mining a few fake blocks that would
lack arbitrarily many confirmations for a targeted transaction).

For argument’s sake, we’ll ballpark the cost that an attacker would be willing
to bear in carrying out this attack at 25 BTC, which is currently two block
rewards. In this case, the number of constrained bits is 33. (If we were to
assume an attacker would risk 687 BTC instead, that would reduce the work
required by 5 bits.)

The locktime is a 4 byte integer, interpreted as a time if over 500,000,000,
or as a block height if under that value. Current time is roughly 1.4B seconds
since the epoch, so we estimate 900M valid values of locktime, which is roughly
29 bits of freedom.

Putting this all together, we have 81 bits of constraint, meaning that an
attacker who can do 81 bits of work (followed by another 40 bits of work, to
construct the funding transaction whose coins will be spent by this one) is able
to fool an SPV client in this way. (Note that this is much less than the 128-bits
of work that we would expect to be required to fool an SPV client, by finding 2
transactions with the same hash.)

4 Vulnerabilities and Mitigations

4.1 Block Malleability

The consensus-splitting potential of block malleability arises from the logic
around treatment of invalid blocks. As discussed in the Bitcoin Core code
comment relating to duplicate transactions, it has been recognized that the
consensus logic must not permanently mark any block header as invalid if the
block being processed could have been malleated: if some other block that cor-
responds to the same header might be valid, then marking the header as invalid
could result in a consensus split.

Duplicate Transactions The issue with duplicate transactions has been
fixed since Bitcoin-Qt version 0.6.1. Then (and now) there were a set of checks
(performed in a function called CheckBlock()) done on incoming blocks whereby
the block would not be stored – and its failure not permanently cached – if any
of those checks failed. The new test for duplicate transactions was added to
that set, thereby resolving the issue.

8

Going up the Merkle tree Another check that was also being done in
CheckBlock() relates to the coinbase transaction: if the first transaction in a
block fails the required structure of a coinbase – one input, with previous output
hash of all zeros and index of all ones – then the block will fail validation. The
side effect of this test being in CheckBlock() was that even though the block
malleability discussed in section 3.1 was unknown, we were effectively protected
against it – as described above, it would take at least 224 bits of work to produce
a malleated block that passed the coinbase check.

By Bitcoin Core version 0.13.0, the implementation around tracking block
malleability had changed, so that potential Merkle tree malleability was detected
in CheckBlock(), and a flag tracked whether the block may have been malleated
or not. That flag was used by the logic that determined whether a block should
be permanently marked as invalid. But CheckBlock() was still being invoked
twice: once with an early-return feature on failure as discussed, and once again
(on success) prior to block storage. Thus even if a block failed in CheckBlock()

for a reason that was believed to be certainly invalid (and not potentially due
to malleation), the logic would not permanently mark the block as invalid.

Thus it appeared redundant to be invoking this function twice. In Bitcoin
Core commit dbb89dc, this seemingly redundant call was eliminated, so that
when CheckBlock() failed due to a reason not specifically known to be potential
malleation, the failure was marked as permanent. As a result, Bitcoin Core
releases 0.13.0, 0.13.1, and 0.13.2 are all vulnerable to the attack described in
3.1.

This change was reverted in Bitcoin Core commit ba803ef, after the issue
became privately known, prior to the 0.14.0 release. The 0.13 releases are the
only releases known to be vulnerable to this concern.

Further mitigations are likely to be proposed in the future, such as by never
permanently marking a block as invalid if it consists entirely of 64-byte transac-
tions3, or a consensus change to disallow 64-byte transactions altogether. Pro-
posal of more direct fixes such as these have been delayed pending mitigation
and disclosure of the issue facing light clients (described in 3.2).

4.2 Light clients

A number of mitigations are possible to protect light clients from the attack
described in 3.2. Starting in Bitcoin Core 0.16.1, 64-byte transactions will no
longer be accepted to the mempool. If that policy is adopted by miners, then
it may be reasonable to propose a consensus change that would make 64-byte
transactions invalid, which if adopted would permanently eliminate the ambigu-
ity between leaves and nodes in the Merkle tree going forward, and also protect

3Note that the 64 bytes refers to the transaction length when serialized without witnesses,
throughout this document.

9

existing light clients with no changes required on their part.4

Note that a small number of 64-byte transactions have appeared in the
blockchain already.

Other mitigations are also available to light clients, such as requiring that
proofs always include a path to the coinbase along with the coinbase transaction
(for determining Merkle-tree depth, which must be the same for all transactions
in a block). This would require a software change for light clients – in particular,
to verify that the coinbase transaction has the prescribed form – but would not
require any consensus changes.

Sergio Lerner discusses additional mitigations in his report [1] as well.

References

[1] Lerner, Sergio. ”Leaf-Node Vulnerability in Bitcoin Merkle Tree De-
sign”. August 4, 2017. Announced on the bitcoin-dev mailing list on
June 8, 2018 (https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-
June/016104.html).

[2] Todd, Peter. Email to the bitcoin-dev mailing list on June 7,
2018 (https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-
June/016091.html).

4We omitted discussion of attacking an SPV client by going up the Merkle tree and claiming
that an interior node is a transaction of interest. Under reasonable assumptions, a light client
could be tricked into thinking one of its outputs was spent with 116 bits of work. If a consensus
change were made to make 64 byte transactions invalid, then light clients could be completely
protected from this if they were modified to reject 64 byte transactions as well.

10

	Background
	Merkle Root Construction
	Block validity in Bitcoin Core

	Duplicate transactions, CVE-2012-2459
	Weaknesses resulting from Merkle tree ambiguities
	Block malleability
	How much work is required to produce a 2-transaction block such that the Merkle root is the hash of a 64-byte input that deserializes as a transaction?
	How much work is required to produce a block such that some row of the Merkle tree consists of 64-byte quantities that deserialize as VALID transactions?

	Attacks on SPV (light) clients
	How much work is required to produce a valid 64-byte transaction such that its lower 32 bytes collide with the hash of some other transaction?

	Vulnerabilities and Mitigations
	Block Malleability
	Light clients

