
Constructing correct RCU data structures

Josh Triplett

October 25, 2013

Josh Triplett Constructing correct RCU data structures October 25, 2013 1 / 9



Locks are (relatively) easy

Simple mental model

Hold the lock when touching the data structure

Make the data structure consistent before dropping the lock

Fine-grained locks, rwlocks: not conceptually harder

Note what each lock protects and what order to acquire them
lockdep helps

Josh Triplett Constructing correct RCU data structures October 25, 2013 2 / 9



Locks are (relatively) easy

Simple mental model

Hold the lock when touching the data structure

Make the data structure consistent before dropping the lock

Fine-grained locks, rwlocks: not conceptually harder

Note what each lock protects and what order to acquire them
lockdep helps

Josh Triplett Constructing correct RCU data structures October 25, 2013 2 / 9



RCU data structures are mostly cargo-culted

How do you construct new data structures and algorithms?

How do you review new data structures and algorithms?

How much does your data structure look like a linked list?

Josh Triplett Constructing correct RCU data structures October 25, 2013 3 / 9



RCU data structures are mostly cargo-culted

How do you construct new data structures and algorithms?

How do you review new data structures and algorithms?

How much does your data structure look like a linked list?

Josh Triplett Constructing correct RCU data structures October 25, 2013 3 / 9



RCU linked-list insertion

1

2

3

Initial state of the list; writer wants to insert 2.

Initialize 2’s next pointer to point to 3

rcu assign pointer to publish 2 to node 1’s next pointer (includes an
smp wmb())

Readers can immediately begin observing the new node

Josh Triplett Constructing correct RCU data structures October 25, 2013 4 / 9



RCU linked-list insertion

1

2

3

Initial state of the list; writer wants to insert 2.

Initialize 2’s next pointer to point to 3

rcu assign pointer to publish 2 to node 1’s next pointer (includes an
smp wmb())

Readers can immediately begin observing the new node

Josh Triplett Constructing correct RCU data structures October 25, 2013 4 / 9



RCU linked-list insertion

1

2

3

Initial state of the list; writer wants to insert 2.

Initialize 2’s next pointer to point to 3

rcu assign pointer to publish 2 to node 1’s next pointer (includes an
smp wmb())

Readers can immediately begin observing the new node

Josh Triplett Constructing correct RCU data structures October 25, 2013 4 / 9



RCU linked-list insertion

1

2

3

Initial state of the list; writer wants to insert 2.

Initialize 2’s next pointer to point to 3

rcu assign pointer to publish 2 to node 1’s next pointer (includes an
smp wmb())

Readers can immediately begin observing the new node

Josh Triplett Constructing correct RCU data structures October 25, 2013 4 / 9



RCU linked-list removal

1 2 3

Initial state of the list; writer wants to remove node 2

Set 1’s next pointer to 3, removing 2 from the list for all future
readers

synchronize rcu() to wait for existing readers to finish

Now no readers can hold references to 2, so the writer can safely
reclaim it.

Josh Triplett Constructing correct RCU data structures October 25, 2013 5 / 9



RCU linked-list removal

1 2 3

Initial state of the list; writer wants to remove node 2

Set 1’s next pointer to 3, removing 2 from the list for all future
readers

synchronize rcu() to wait for existing readers to finish

Now no readers can hold references to 2, so the writer can safely
reclaim it.

Josh Triplett Constructing correct RCU data structures October 25, 2013 5 / 9



RCU linked-list removal

1 2 3

Initial state of the list; writer wants to remove node 2

Set 1’s next pointer to 3, removing 2 from the list for all future
readers

synchronize rcu() to wait for existing readers to finish

Now no readers can hold references to 2, so the writer can safely
reclaim it.

Josh Triplett Constructing correct RCU data structures October 25, 2013 5 / 9



RCU linked-list removal

1 3

Initial state of the list; writer wants to remove node 2

Set 1’s next pointer to 3, removing 2 from the list for all future
readers

synchronize rcu() to wait for existing readers to finish

Now no readers can hold references to 2, so the writer can safely
reclaim it.

Josh Triplett Constructing correct RCU data structures October 25, 2013 5 / 9



How do you generalize this?

Readers and writers can overlap

Loads and stores can be reordered

Hard to reason about barrier and synchronize rcu() placement

Trying to prove a negative

Construct ordering scenarios, insert barriers, repeat until insane

Josh Triplett Constructing correct RCU data structures October 25, 2013 6 / 9



How do you generalize this?

Readers and writers can overlap

Loads and stores can be reordered

Hard to reason about barrier and synchronize rcu() placement

Trying to prove a negative

Construct ordering scenarios, insert barriers, repeat until insane

Josh Triplett Constructing correct RCU data structures October 25, 2013 6 / 9



Simple mental model for new RCU data structures

Forget about overlap, interleaving, or reordering

Assume a reader can run atomically between any two stores.

Enforce this model via completely mechanical barrier placement.

Josh Triplett Constructing correct RCU data structures October 25, 2013 7 / 9



Placing barriers

Between a pair of loads in a reader:

Use rcu dereference() for dependent reads (traversal)
Use smp rmb() for independent reads

Between ordered writes in a writer, compare write order to reader
traversal order:

If you write in the same order a reader reads, use synchronize rcu()
If you write in the opposite order a reader reads, use smp wmb() or
rcu assign pointer()

Josh Triplett Constructing correct RCU data structures October 25, 2013 8 / 9



Placing barriers

Between a pair of loads in a reader:

Use rcu dereference() for dependent reads (traversal)
Use smp rmb() for independent reads

Between ordered writes in a writer, compare write order to reader
traversal order:

If you write in the same order a reader reads, use synchronize rcu()
If you write in the opposite order a reader reads, use smp wmb() or
rcu assign pointer()

Josh Triplett Constructing correct RCU data structures October 25, 2013 8 / 9



Placing barriers

Between a pair of loads in a reader:

Use rcu dereference() for dependent reads (traversal)
Use smp rmb() for independent reads

Between ordered writes in a writer, compare write order to reader
traversal order:

If you write in the same order a reader reads, use synchronize rcu()
If you write in the opposite order a reader reads, use smp wmb() or
rcu assign pointer()

Josh Triplett Constructing correct RCU data structures October 25, 2013 8 / 9



Examples

Linked-list insert

Linked-list removal

Array resize

Your data structure (or patch to review) here

Josh Triplett Constructing correct RCU data structures October 25, 2013 9 / 9


