Scriptless Scripts with ECDSA

Pedro Moreno-Sanchez, Aniket Kate

Version: April 26, 2018

Andrew Poelstra introduced the notion of Scriptless Scripts [1] as a way to realize smart contracts that no
longer requires the Bitcoin scripting language. Although Bitcoin contracts have emerged as a widespread tool
to build smart contracts, Bitcoin scripts have some disadvantages: First, all full nodes in the Bitcoin network
must parse and validate the Bitcoin scripts apart from the signatures included in the transactions. Second,
Bitcoin scripts lack the internal structure required to aggregate them. Last, but not least, Bitcoin scripts
are added indeterminately in the blockchain so that they may hinder privacy and fungibility. Scriptless
scripts instead, only require functionality from a digital signature scheme, which is essential already in the
transactions, while the only elements visible in the blockchain are public keys and signatures.

In this state of affairs, several interesting applications of Scriptless Scripts have been proposed so far such
that Mimblewimble [2], Adaptor Signatures [3] or a Scriptless version of the Lightning Network protocol [4].
All of the applications proposed so far rely on the Schnorr signature scheme. In a nutshell, they leverage the
linear structure of the Schnorr signature, which ECDSA does not have. Given that, many today advocate
for the inclusion of Schnorr signatures in Bitcoin as no construction for ECDSA-based Scriptless Scripts is
available.

In this post, we show that it is actually possible to build Scriptless Scripts based on ECDSA. The
most important advantage is that they are fully compatible with the current Bitcoin protocol as Bitcoin
transactions are already signed with ECDSA signatures. Therefore, ECDSA-based constructions enable to
apply Scriptless Scripts applications right now in Bitcoin!!

Preliminaries: the ECDSA signature itself

In this description, we describe the ECDSA signature scheme. Assume that Alice has a private key x, the
corresponding public key g* and she wants to sign a message m. Alice can compute a signature on a message
m as follows:

1. Choose a random k
2. Compute R := g*

3. Assume R is the point (rg,7,). Then, compute r := r,. In other words, r is the = coordinate of the
curve point R.

4. Compute the signature s := k=! - (LSB(H(m)) +r - x). Here LSB denotes the least significant bits
function and H denotes a hash function.

5. Output (r, s)

Efficient two-party ECDSA protocol

One of the major challenges with ECDSA has been to design an efficient 2-of-2 signature protocol. Recently,
Yehuda Lindell has presented a paper with an efficient construction of this protocol [5]. We sketch it here
as our proposal for Scriptless Scripts is an extension of the Lindell’s protocol, as we explain later. We refer
the reader to the original paper to a more elaborate description and a formal security analysis.

Assume that Alice has public key P := ¢g** and nonce R; := ¢"'. Further assume that Bob has public
key P, := g and nonce R; := ¢". Finally, assume that Alice provides Bob ciey := Encp, (1), a Paillier
encryption of x; that only Alice can decrypt. Then, the 2-of-2 ECDSA Multisignature works as follows:

1. Alice and Bob agree on Py, P, Ry, Ry and m/, where m’ = LSB(H(m)). For security, Alice and Bob
should additionally exchange non-interactive zero-knowledge to prove the knowledge of the exponents
of P, P, Ry and Ry. This is step is fundamental also in our proposed protocols in later sections.
However, we omit it to improve readability.

2. Alice computes R < (R2)™. Bob computes the R < (R;)". From the same R both can extract the
x coordinate 7 := r,.

3. Bob computes ¢1 < Encpi, ((k2) ™' -m/+pq) and ¢, = (ckey)“'r'(’“?)_l. Here, p denotes a large random
number and ¢ denotes the modulo used during the cryptographic operations. We refer to [5] for the
technical explanation why this term is required. Then, Bob computes c3 = ¢1 @ co, where & denotes
the additive homomorphic operation of Paillier cryptosystem. Therefore, c5 = Encyy, ((k2)™ - m' +
pq+ 1 -2 -7 (k2)™1). In other words, c3 is the encryption of a “pre-signature” from Bob. Finally,
Bob sends c3 to Alice.

4. Alice decrypts c3 to get s'. She computes s < s" - (k1)~! and output (r,s) as the ECDSA signature.

A malicious Bob here could deviate from the protocol and encrypt an arbitrary value. However, Alice
can check that Bob behaved correctly by verifying that the pair (r, s) is a valid ECDSA signature under the
public key Q. Otherwise, Alice can abort the protocol.

Starting the Fun: Adaptor Signatures from ECDSA

The notion of adaptor signature was introduced by Andrew Poelstra as an application of Scriptless Script
to encode the following “smart contract”. Assume that Bobs knows a secret value a and Alice and Bob
share g®. There are two goals that they want to achieve: (i) Alice can create a “half-signature” so that Bob
can finish it only if he knows «; (ii) Alice and Bob can create a signature that reveals the value o to Alice.
Poelstra showed how to realize this contract using Schnorr signatures. Here, we describe how to instantiate
using ECDSA signatures.

Assume the same setting as in the Lindell’s protocol. That is, assume that Alice has public key P; := g**
and nonce R; := ¢g"'. Further assume that Bob has public key P, := ¢g*2 and nonce Ry := g™. Finally,
assume that Alice provides Bob cjey := Encpy, (1), a Paillier encryption of z; that only Alice can decrypt.
Additionally, assume that Bob knows « and shares g with Alice.

The protocol works as follows. Alice and Bob are going to create a signature that depends on three
randomness (r1, 79, @). Bob gives Alice a “pre-signature” that only encodes his randomness r5. Alice verifies
that’s actually the case and if so, she gives Bob her own “pre-signature” that encodes both ro and ry. Finally,
Bob constructs the final signature encoding the three randomness. We show that as soon as Bob publishes
a valid signature, Alice can use it to extract a combining the published signature and her pre-signature.

In a bit more detail, the protocol works as follows:

XT1-T2

1. Alice and Bob agree on P;, P», R1, Ry, m’ and compute Q := g

2. Bob sends R3 := (¢*)™ to Alice along with a zero-knowledge proof of the fact Re = g™ A Rz = (¢*)™
without revealing the values ry and «.

3. Alice computes R < (R3)". Bob computes the R < (R1)">'*. From the same R both can extract the
x coordinate 7 := 1.

4. Bob computes ¢; < Encp, ((k2)™ - m’ 4 pq) and ¢z = (ckey)“"“'(k?)_l. Then, Bob computes ¢z =
c1 @ ¢, where @ denotes the additive homomorphic operation of Paillier cryptosystem. Therefore,
c3 = EncpkA((kg)_l -m/ + pq+x1 - 227 (k)7 1). Finally, Bob sends c3 to Alice.

5. Alice decrypts c3 to get s’. Here, she must verify that Bob did not cheat while performing the
encryption. For that, she verifies that (Rg)* ™°44 = Q".g™ . If it holds, she computes s” < s"-(k;)™*
and send s to Bob.

6. Bob computes s + (a)~! - s” and outputs the signature (r, s).

7. As soon as the signature is published, Alice computes o < (s - (s”)~1)~ 1.

Continue the Fun: Scriptless Lightning Network with ECDSA

The previous construction conceptually behaves as the hash preimage challenge that is required at the
Lightning Network. The main challenge is that during the creation of the payment commitments, none of
the two users Alice and Bob knows the value a to complete the signature. Only when the payment’s receiver
reveals a and this value reaches Bob, the signature can be finished so that coins are transferred from Alice
to Bob.

Technically, the challenge appears in the step 3 of the previous protocol. In particular, if Bob does not
know the value «, he cannot construct R in step 3. If we solve this issue, the rest of the protocol remains the
same. In a nutshell, we solve this issue by having Alice also send her corresponding R and zero-knowledge
proof that R} encodes the product rq - a.

In the following, we show the steps for the protocol that solves the aforementioned issue:

1. Alice and Bob agree somehow on Pi, Py, Ry, Ry, m’ and Q := g*1'%2,

2. Bob sends R3 := (¢®)™ to Alice along with a zero-knowledge proof of the fact Re = g™ A R3 = (¢*)™
without revealing the values ro and «. Similarly, Alice sends R} := (¢®)™ to Bob along with a
zero-knowledge proof of the fact Ry = g™ A R} = (9%)"* without revealing the values r1 and a.

3. Alice computes R + (R3)™. Bob computes the R <+ (R5)™. From the same R both can extract the
x coordinate r := 7.

4. Bob computes ¢; E?’lekA((kg)_l -m' + pq) and ¢y = (ckey)“'r'(“)A. Then, Bob computes c3 =
c1 @ ¢, where @ denotes the additive homomorphic operation of Paillier cryptosystem. Therefore,
cs = Encyp, ((k2)™'-m/ + pg+ @1 - 22 - 7 - (k2)~'). Finally, Bob sends c3 to Alice.

5. Alice decrypts c3 to get s’. Here, she must verify that Bob did not cheat while performing the
encryption. For that, she verifies that (Rp)*" ™04 9 = Q7. g™ . If it holds, she computes s” < - (k)™
and send s” to Bob.

6. As some time later, Bob gets the value a from the next neighbor in the payment path. Then, Bob
computes s < (a)~! - s” and outputs the signature (r,s).

7. As soon as the signature is published, Alice computes a < (s - (s”)~1)~L.

Multiple Possibilities

The previous construction conceptually assumes that the same « is used at each hop of a payment path.
However, it is easily possible to slightly modify it so that each hop uses a different « value as the challenge
pre-image.

There are a plethora of other applications that can benefit from the ECDSA-based Scriptless Scripts. For
instance, the construction presented here can be leveraged to perform an Scriptless Atomic Swap compatible
with current Bitcoin protocol.

Recently, other constructions for 2-of-2 ECDSA signature protocols have appeared [6]. It seems like it
won’t be as efficient as the one presented here.

References

[1] https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.

