[Bridge] [PATCH net-next] Documentation: networking: Clarify switchdev devices behavior

Randy Dunlap rdunlap at infradead.org
Thu Jul 23 02:25:35 UTC 2020


Hi,

This mostly looks good to me. I have a few edits below.


On 7/22/20 3:52 PM, Florian Fainelli wrote:
> This patch provides details on the expected behavior of switchdev
> enabled network devices when operating in a "stand alone" mode, as well
> as when being bridge members. This clarifies a number of things that
> recently came up during a bug fixing session on the b53 DSA switch
> driver.
> 
> Signed-off-by: Florian Fainelli <f.fainelli at gmail.com>
> ---

>  Documentation/networking/switchdev.rst | 118 +++++++++++++++++++++++++
>  1 file changed, 118 insertions(+)
> 
> diff --git a/Documentation/networking/switchdev.rst b/Documentation/networking/switchdev.rst
> index ddc3f35775dc..2e4f50e6c63c 100644
> --- a/Documentation/networking/switchdev.rst
> +++ b/Documentation/networking/switchdev.rst
> @@ -385,3 +385,121 @@ The driver can monitor for updates to arp_tbl using the netevent notifier
>  NETEVENT_NEIGH_UPDATE.  The device can be programmed with resolved nexthops
>  for the routes as arp_tbl updates.  The driver implements ndo_neigh_destroy
>  to know when arp_tbl neighbor entries are purged from the port.
> +
> +Device driver expected behavior
> +-------------------------------
> +
> +Below is a set of defined behavior that switchdev enabled network devices must
> +adhere to.
> +
> +Configuration less state

   Configuration-less state

> +^^^^^^^^^^^^^^^^^^^^^^^^
> +
> +Upon driver bring up, the network devices must be fully operational, and the
> +backing driver must configure the network device such that it is possible to
> +send and receive traffic to this network device and it is properly separated
> +from other network devices/ports (e.g.: as is frequent with a switch ASIC). How
> +this is achieved is heavily hardware dependent, but a simple solution can be to
> +use per-port VLAN identifiers unless a better mechanism is available
> +(proprietary metadata for each network port for instance).
> +
> +The network device must be capable of running a full IP protocol stack
> +including multicast, DHCP, IPv4/6, etc. If necessary, it should program the
> +appropriate filters for VLAN, multicast, unicast etc. The underlying device
> +driver must effectively be configured in a similar fashion to what it would do
> +when IGMP snooping is enabled for IP multicast over these switchdev network
> +devices and unsolicited multicast must be filtered as early as possible into
> +the hardware.
> +
> +When configuring VLANs on top of the network device, all VLANs must be working,
> +irrespective of the state of other network devices (e.g.: other ports being part
> +of a VLAN aware bridge doing ingress VID checking). See below for details.

        VLAN-aware

> +
> +If the device implements e.g.: VLAN filtering, putting the interface in
> +promiscuous mode should allow the reception of all VLAN tags (including those
> +not present in the filter(s)).
> +
> +Bridged switch ports
> +^^^^^^^^^^^^^^^^^^^^
> +
> +When a switchdev enabled network device is added as a bridge member, it should

          switchdev-enabled

> +not disrupt any functionality of non-bridged network devices and they
> +should continue to behave as normal network devices. Depending on the bridge
> +configuration knobs below, the expected behavior is documented.
> +
> +Bridge VLAN filtering
> +^^^^^^^^^^^^^^^^^^^^^
> +
> +The Linux bridge allows the configuration of a VLAN filtering mode (compile and
> +run time) which must be observed by the underlying switchdev network
> +device/hardware:
> +
> +- with VLAN filtering turned off: the bridge is strictly VLAN unaware and its
> +  data path will only process untagged Ethernet frames. Frames ingressing the
> +  device with a VID that is not programmed into the bridge/switch's VLAN table
> +  must be forwarded and may be processed using a VLAN device (see below).
> +
> +- with VLAN filtering turned on: the bridge is VLAN aware and frames ingressing
> +  the device with a VID that is not programmed into the bridges/switch's VLAN
> +  table must be dropped (strict VID checking).
> +
> +Non-bridged network ports of the same switch fabric must not be disturbed in any
> +way by the enabling of VLAN filtering on the bridge device(s).
> +
> +VLAN devices configured on top of a switchdev network device (e.g: sw0p1.100)
> +which is a bridge port member must also observe the following behavior:
> +
> +- with VLAN filtering turned off, enslaving VLAN devices into the bridge might
> +  be allowed provided that there is sufficient separation using e.g.: a
> +  reserved VLAN ID (4095 for instance) for untagged traffic. The VLAN data path
> +  is used to pop/push the VLAN tag such that the bridge's data path only
> +  processes untagged traffic.
> +
> +- with VLAN filtering turned on, these VLAN devices can be created as long as
> +  there is not an existing VLAN entry into the bridge with an identical VID and
> +  port membership. These VLAN devices cannot be enslaved into the bridge since
> +  because they duplicate functionality/use case with the bridge's VLAN data path

drop one of: since / because

> +  processing.
> +
> +Because VLAN filtering can be turned on/off at runtime, the switchdev driver
> +must be able to re-configure the underlying hardware on the fly to honor the

                   reconfigure

> +toggling of that option and behave appropriately.
> +
> +A switchdev driver can also refuse to support dynamic toggling of the VLAN
> +filtering knob at runtime and require a destruction of the bridge device(s) and
> +creation of new bridge device(s) with a different VLAN filtering value to
> +ensure VLAN awareness is pushed down to the HW.

              (preferably)                     hardware.

> +
> +Finally, even when VLAN filtering in the bridge is turned off, the underlying
> +switch hardware and driver may still configured itself in a VLAN aware mode

                                        configure              VLAN-aware

> +provided that the behavior described above is observed.
> +
> +Bridge IGMP snooping
> +^^^^^^^^^^^^^^^^^^^^
> +
> +The Linux bridge allows the configuration of IGMP snooping (compile and run
> +time) which must be observed by the underlying switchdev network device/hardware
> +in the following way:
> +
> +- when IGMP snooping is turned off, multicast traffic must be flooded to all
> +  switch ports within the same broadcast domain. The CPU/management port
> +  should ideally not be flooded and continue to learn multicast traffic through
> +  the network stack notifications. If the hardware is not capable of doing that
> +  then the CPU/management port must also be flooded and multicast filtering
> +  happens in software.
> +
> +- when IGMP snooping is turned on, multicast traffic must selectively flow
> +  to the appropriate network ports (including CPU/management port) and not be
> +  unnecessarily flooding.
> +
> +The switch must adhere to RFC 4541 and flood multicast traffic accordingly
> +since that is what the Linux bridge implementation does.
> +
> +Because IGMP snooping can be turned on/off at runtime, the switchdev driver
> +must be able to re-configure the underlying hardware on the fly to honor the

                   reconfigure

> +toggling of that option and behave appropriately.
> +
> +A switchdev driver can also refuse to support dynamic toggling of the multicast
> +snooping knob at runtime and require the destruction of the bridge device(s)
> +and creation of a new bridge device(s) with a different multicast snooping
> +value.


thanks.
-- 
~Randy



More information about the Bridge mailing list