
NUCLEUS:
Capital-efficient multipeer

Lightning payment channels
Working draft, version 0.1.0 of 21 Aug 2023 (Helium)

GKawjD-cefXUrjP-Lr6h8oPt-wPj9vX44-SDhdnJFv-DHfPbx1

1atomic-mr-nuclear@onionmail.org

Abstract—Lightning payment channels are the only solution
for blockchain scalability problem available for existing UTXO-
based P2P networks which doesn’t require consensus-breaking
changes. Still, existing forms of payment channels are capital-
inefficient and put high availability requirements on the partic-
ipants, which reduces system utility and adoption. The current
work proposes a new form of Lightning channels (named "Nu-
cleus"), which can be created and run by multiple participants
making their liquidity fully available inside a multipeer channel.
This significantly increases capital efficiency, improves liveness
and doesn’t require the creation or participation in an atomic
swap routing network (Lightning network). The solution can
operate on top of any UTXO-based blockchain equipped with
N -of-M threshold signature scheme(s) and timelocks, without
introducing new consensus-level requirements of script opera-
tional codes.

I. INTRODUCTION

Blockchains, which are distributed event log databases
("distributed ledgers"), do not scale well and are poor on
privacy. While the latter problem is potentially addressable
with zero-knowledge proof systems (like in Mimblewimble
[7]), it appears that the former problem can’t be addressed at
the blockchain (layer 1) level without increasing trust assump-
tions, thus requiring a dedicated abstraction layer above.

One of the early and still promising directions for layer 2
constructions are Lightning channels providing the ability to
trustlessly maintain state by a number of participants on top of
UTXO-based blockchain(s). Multiple Lightning channel vari-
ants do exist today (Poon-Dryja [8], Decker-Wattenhofer [3],
Decker-Russell-Osuntokun [2], Burchert-Decker-Wattenhofer
[1]), however, all of them require participants to be perma-
nently online and to provide excessive capital for getting in-
bound liquidity, which significantly reduces capital efficiency.
If both conditions are not met the utility of Lightning channels
as an offchain settlement layer significantly degrades; which
leads to the fact that the only existing liquidity network made
with lightning channels (Lightning network) falls more than
an order of magnitude behind both onchain payments (by
transactional volume) and the total capital locked for other
types of layer 2 solutions (for instance, rollups has more
than $2b of total capital locked with some leading protocols
providing >$1b [4], comparing to $160m of capital locked in
Lightning network [5], which got to production years before).

II. DESIGN

A. Basic construction

A Nucleus channel can be created by any number of peers
(two and more), P := {A,B,C, ...X}, N := |P|, N ≥ 2, and
has a structure shown on the Figure 1.

The channel is opened by a funding transaction, containing
single output (funding output) locking funds to an N -of-N
multisig (such multisigs hereinafter we will denote as

∑N
i=0 pi

with pi ∈ P). The funding transaction should be mined on-
chain as a prerequisite for channel security.

A state of a Nucleus channel includes outputs of the alloca-
tion transaction, always directly spending the funding output
of the funding transaction, distributing it among the channel
peers, and from zero to any number of operation transactions,
spending allocation transaction outputs and, optionally outputs
of other operation transactions.

Outputs of both allocation transaction and operation trans-
actions are constructed in the same manner: they can be spent
by either the output owner (one of the channel peers), but
after a certain timelock tl, – or by the same peer plus any
other half of the channel peers, i.e. by cooperative signatures
from Q ⊂ P, where |Q| ≥ ⌊|P|/2⌋+ 1.

As will be explained later, the unspent outputs of the
allocation transaction represent secured state, which can be
redeemed by the peers onchain not relying on any assump-
tions; the unspent outputs of the operation transaction DAG
represent a partial state update, which security relies on a
honest majority assumption (i.e. that ⌊N/2⌋ + 1 of the peers
are honest) during the time until the channel is not closed or
a new allocation transaction is signed.

B. Channel operations

If all peers are online and cooperative, a channel state is
updated by simply signing a new version of the allocation
transaction, which requires signatures from all channel peers.
In case not all channel peers are online or ready to sign a state
update, a new operation transaction is created, which spends
inputs only of those peers who like to update their state (for
instance, make a payment to each other).

Once all the peers are online, they should cooperate and
sign a new version of the allocation transaction, which must

Figure 1: Initial set of transactions at the moment of Nucleus
channel establishment

Fu
nd

in
g

tx

A
lic

e
B

ob
C

ar
ol

A
llo

ca
tio

n
tx

12

X
av

ie
r

...

Each row on the diagram represents a peer. Square boxes are trans-
actions. Transaction outputs are shown as sockets with the spending
conditions listed as a text note. Each row of the note is an alternative
condition (i.e. represents different taproot script path spendings),
where big Latin letters represent the signature requirement from
a peer and tl stays for "timelock". For spent transaction outputs
spending conditions which were satisfied by a witness of the spending
transaction are shown in bold and above the output socket.

Black boxes are mined transactions and white - transactions are kept
as a part of a state channel. Numbers in circles are the order by which
the peers must sign their inputs of the corresponding transactions.

correspond to the previous allocation transaction with all
operation transaction graphs applied on top. The peers are
incentivised on doing that since it reduces the cost for each
of them to close the channel in a unilateral way (the smaller
DAG size means lower fees). This also resets the security of
the channel state back to the trustless level.

Each update of the allocation transaction must contain a
smaller timelock value than the previous transaction – using
the same design as was originally proposed in the seminal
work on channel factories [1], including an ability to extend
the size of the history with additional transaction level above
the allocation transaction, creating timelock tree (Figure 2).

Figure 2: Timelock tree of channel transactions

Fu
nd

in
g

tx

A
lic

e

A
llo

ca
tio

n
tx

13

X
av

ie
r

... 100

Ti
m

el
oc

k
tx

100

2

A
llo

ca
tio

n
tx

4

99

A
llo

ca
tio

n
tx

103

0

...

Ti
m

el
oc

k
tx

99

105

A
llo

ca
tio

n
tx

104

100

Hexagonal labels at the bottom of the transaction box provide
the value for transaction timelock; empty circular inputs represent
inputs which prevent transactions from being mined due to timelock
conditions (when a transaction with a larger timelock exists). For the
rest of the legend refer to Figure 1.

C. Exclusion of peers

A set of peers E ⊂ P,M := |E|,M < N can be voluntary
or involuntary excluded from the Nucleus channel by the
remaining subset of peers S := P\E, which cooperatively
have to construct exclusion transactions.

1) Voluntary exclusion: A voluntary exclusion transaction
replaces the current allocation transaction and doesn’t contain
any timelock, able to be mined immediately, in front of any
previous allocation transaction. Its preparation requires all P
peers to be online and willing to support the claim of E peers
to be excluded from the channel. Because of the cooperative
nature of this workflow, the number of excluded peers can
be up to the number of the channel peers minus two (M ≤
N − 2) – otherwise the procedure becomes equivalent to the
cooperative channel closing described below.

The exclusion transaction directly spends the only output of
the funding transaction and contains M +1 outputs, where M
outputs send funds to the E peers with no encumbrances, and

one of the outputs contains the remaining funds organized as
(N −M)-of-(N −M) multisig. Once signed, the transaction
gets published to the network and, once mined, replaces the
current funding transaction, providing single funding output
to the new channel of S peers, leaving E with their funds
onchain, outside of the channel.

2) Forced exclusion: In case of forced (or involuntary)
exclusion, the peer subset E may be offline or not willing
to cooperate, thus the exclusion transaction can’t spend the
funding output and a new funding transaction is created on
top of the currently-valid allocation transaction. It spends all
outputs of the allocation transaction for the S peers by using
cooperative signatures – and has a single output, spendable by
M -of-M multisig. Additionally to this, S peers create and sign
a new allocation transaction (NB: the new allocation transac-
tion must be signed before the new funding transaction), which
has the same structure as the previous allocation transaction –
but with the reduced numbers of peers.

Now, the peers can publish both previous allocations and
new funding transactions. Non-zero timelock of previous allo-
cation transaction prevents it from being instantly mined and
provides an opportunity for the set-to-be-excluded peers to
cooperate and either become responsive by signing a new
allocation transaction with a lower timestamp (invalidating
published allocation transaction) – or to sign a voluntary
exclusion transaction.

Until the published exclusion transactions can be mined or
invalidated by a new allocation or voluntary exclusion trans-
action (if excluded peers become cooperative), the channel
continues to operate by using subchannel funding from the
new funding transaction and using a new allocation transaction
for the subchannel S underneath it.

The details of the transaction graph for the channel going
through the forced exclusion procedure are graphically illus-
trated in Figure 3.

D. Inclusion of new peers

New peers – or additional funding – can be added to the
channel by replacing the current funding transaction with a
new transaction, spending the current funding output (signed
by all current channel peers P) and adding new peers X or
funds for the existing peers as additional inputs to it. The
funding transaction output defines a new channel, P+X and
requires signatures from all previous and new peers.

E. Cooperative closing

Cooperative closing can happen when all channel peers are
online and willing to close the channel. A special closing
transaction, spending funding transaction output is created
and its input is signed by all peers, fulfilling funding transac-
tion spending conditions (N -of-N multisig). The transaction
should not contain any timelock and thus can be mined
instantly as published - ahead of other allocation transactions.

F. Uncooperative closing

Any party may publish all or some of the channel transac-
tions, including timelock transactions (if the channel operates

Figure 3: Forced exclusion transaction graph

A
lic

e
B

ob
C

ar
ol

A
llo

ca
tio

n
tx

1

X
av

ie
r

...

N
ew

 a
llo

ca
tio

n
tx

3

Fu
nd

in
g

tx

2

>0 100

N
ew

 fu
nd

in
g

tx

0

4

The graph illustrates the non-voluntary (forced) exclusion of two
peers, Alice and Bob, by the remaining set of N −2 peers creating a
new subchannel. Transactions which are published to the network, but
not mined until their timelock will expire, and thus can be replaced if
the excluded peers become cooperative, are shown with grey colour.

For the full legend see Figure 2.

with a timelock tree as shown in Figure 2), allocation trans-
actions and operation transactions; however, because of the
timelock mechanism, this will not lead to the channel closing,
since both allocation and timelock transaction contains a non-
zero timelock.

If the published transactions do not represent the latest
state of the channel, any other peer may publish the latest
version, replacing invalid transactions with a valid ones having
a lower timelock. Then, the channel peers can either wait
for the timelock to run out, which will leave them with
their funds available onchain – or save on fees and sign a
new funding transaction, which will be double-spending the
funding transaction output with zero timelock and use it to
fund a new channel. The new channel may include all or some
of the current channel peers, thus, this scenario can be seen
as a way of doing a channel split or peer exclusion.

III. CHANNEL EXAMPLE

To simplify the explanation, we provide an example of a
Nucleus channel with four peers, Alice, Bob, Carol and Dave,
continuing to operate when Dave gets offline or uncooperative

Figure 4: Example 4-peer Nucleus channel with one unresponsive peer

Fu
nd

in
g

tx

O
pe

ra
tio

n
tx

 A
B

1A
lic

e
(A

)
B

ob
 (B

)
C

ar
ol

 (C
) A

llo
ca

tio
n

tx

A+B+C+D

12
D

av
e

(D
)

3

A+B+C
A+B+D
A+C+D
A+tl

B+A+C
B+A+D
B+C+D
B+tl

A+B+C
A+B+D
A+C+D
A+tl

B+A+C
B+A+D
B+C+D
B+tl

O
pe

ra
tio

n
tx

 B
C

1

4

B+A+C
B+A+D
B+C+D
B+tl

C+A+B
C+A+D
C+B+D
C+tl

C+A+B
C+A+D
C+B+D
C+tl

D+A+B
D+A+C
D+B+C
D+tl

O
pe

ra
tio

n
tx

 A
B

2

5

A+B+C
A+B+D
A+C+D
A+tl

B+A+C
B+A+D
B+C+D
B+tl

For the legend refer to the Figure 1.

(Figure 4). The three remaining peers, instead of signing the
updated versions of the allocation transaction with shorter
timelocks switch into producing separate operation transac-
tions for each move of the funds between them. The operation
transactions have zero timelock and may spend inputs of each
other, using the signature from two (or more) transacting peers,
plus signatures of other peers such that a signature threshold
condition of ⌊N/2⌋+1 signatures are met. Since the channel
has 4 peers, each input of each operation transaction has to
be signed by all three remaining peers, which prevents Alice
and Bob from cheating and double-spending the output of their
operation transaction AB1 when transferring funds with Carol.

If Dave stays offline or uncooperative for a long period of
time, the three remaining peers can proceed with the forced
exclusion procedure and re-establish the channel without Dave.
This will help them to reset the size of the channel operation

graph down to a single new allocation transaction.

IV. ANALYSIS

A. Liveness

The protocol requires at least ⌊N/2⌋+1 peers to be online
and cooperative for the channel to be able to continue opera-
tions, where all peers remaining online can transact with other
peers inside the channel. This is a significant improvement
over existing payment channel design [8], [6], [2], where the
unresponsiveness of even one peer stops or creates significant
obstacles for the channel operations.

B. Capital efficiency

All of the liquidity owned by each of the peers is available
for arbitrary transactions with other channel peers, removing
the requirement of inbound liquidity present in the modern-day
Lightning network [8], [6]. This is a signification improvement

for capital efficiency which may boost layer 2 capital supply
and adoption.

C. Scalability
1) Transaction speed: Each transaction between channel

peers requires either ⌊N/2⌋+1 or N signatures. The original
channel factories proposal [1] requires just two signatures for
peer-to-peer transactions, however, N2 transactions, establish-
ing subchannels between all of the peers, has to be pre-signed,
and the liquidity can’t be shared between those channels.

2) Storage: Since the channel doesn’t use a penalty mech-
anism and relies on timelocks, it is not required to store
signatures for the past transaction, which removes the storage
growth problem present in the Lightning network as defined
by the BOLT specs [8], [6]. If a node loses part of all of
the transaction graph, it doesn’t lose access to the funds
(see Security subsection below) and the importance of state
backups is also reduced compared to the existing approach
taken by the BOLT specs [6].

3) Number of peers: The channel computational and stor-
age requirements scale linearly with the growth of the number
of peers. This is an improvement compared to the channel
factories, where it takes O(N2) operations to set up the
channel factory [1].

Per-peer liquidity accessibility doesn’t get reduced with the
increase in the number of peers, and the total liquidity usable
by a channel grows linearly.

4) Liquidity: Liquidity can be removed and added to chan-
nels with channel split-in and split-out operations, where a
funding transaction is replaced with a new one. This requires
a single onchain operation and is similar to the splicing
proposals for the modern Lightning network [6].

5) Inter-channel scalability: Liquidity is freely exchange-
able between peers participating in the same channel. Perform-
ing transactions outside of the channel will require a form
of cross-channel atomic swaps – with mechanics similar to
ones used by the BOLT Lightning network for all "routed"
transactions [6]. This may include hash-time-locked contracts
(HTLC), elliptic curve point-time-locked contractions (PTLC)
or other future atomic operation schemes.

D. Security
Liquidity brought to the channel by the peers under no

conditions can move without their signature, providing secu-
rity guarantees against thieves. Nevertheless, in case some of
the peers become unresponsive, the channel starts operating
with partial state updates (using the operation transaction
graph on top of the allocation transaction), which decreases
the security of the funds transferred in such operations to
the honest majority assumption. This happens due to the
fact that outputs in the graph can be double-spend by their
owners with cooperation from the majority, and using such
outputs as inputs in other operational transactions relies on
the honesty of the channel peer majority preventing such
double-spends. However, this state is only temporary, since
the channel security can be reset to the fully trustless level by
excluding uncooperative peers from the channel.

E. Interoperability

Nucleon channels may interoperate with existing Lightning
network [6] by meeting two conditions: (1) supporting HTLC-
based atomic swaps (or other future atomic swap protocols)
and routed payment workflow and (2) having peers running
software supporting BOLT P2P and gossip network protocols.

The exact mechanism of atomic swap integration into the
Nucleon channels is the subject of a separate research and
design effort.

F. Comparative analysis

1) BOLT Lightning network: Nucleus channels remove the
requirement for inbound liquidity and allow non-routed multi-
peer offchain payments. Any number of peers may participate
and use all of their liquidity to interact with any other peer
without constraints. However, the case of two peers doesn’t
provide any advantages compared to the Poon-Dryja channels
[8] used in the Lightning network today. Thus, this case can be
used only as an intermediary step before adding more peers.

2) Channel factories: An operational transaction may be
seen as a form of a "subchannel", created by an allocation
transaction acting as a "channel factory" designed after [1],
however, there are several important differences. First, parties
are able to create new operation transaction even when up to
half of peers is offline, while either all possible subchannels
has to be pre-signed – or all peers of a channel factory have to
be online to sign subchannel commitment transaction. Second,
unlike subchannels, which can’t share liquidity, operational
transactions can spend outputs from other operational trans-
actions. This provides a great increase in flexibility (different
peers can go offline at different moments of time - and the
remaining peers can still continue to transact) and higher cap-
ital efficiency (no capital is kept inside separate subchannels)
– at the cost of reduced security: if the majority of the peers
are cheating, they can attack other peers with double-spend
attacks and non-cooperatively close the channel into that state,
stealing some of the funds coming from the compromised
operation transactions (see section Honest majority assumption
for further analysis of this specific attack vector).

V. TRIVIA

The protocol name Nucleus is inspired by atomic and
quantum physics analogy, where baryons participating in the
atomic nucleus (nucleons) are bound together by strong forces
– however they may still leave the nucleus via nuclear fission.
Nucleons are constantly exchanging gluons, shifting from
neutrons to protons and back all the time. This is similar
to the set of peers bound into the same multi-peer channel,
interacting and exchanging funds, and also being able to leave
the channel via voluntary or involuntary exclusion procedures.

REFERENCES

[1] Conrad Burchert, Christian Decker, and Roger Watten-
hofer. Scalable funding of Bitcoin micropayment channel
networks. 2018. URL: https://royalsocietypublishing.org/
doi/pdf/10.1098/rsos.180089.

https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180089
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180089

[2] Christian Decker, Rusty Russel, and Olaoluwa Osun-
tokun. eltoo: A Simple Layer2 Protocol for Bitcoin. URL:
https://blockstream.com/eltoo.pdf. Retrieved 2018-05-02.

[3] Christian Decker and Roger Wattenhofer. A Fast and
Scalable Payment Network with Bitcoin Duplex Micro-
payment Channels. URL: https : / / tik - old . ee . ethz .
ch / file / 716b955c130e6c703fac336ea17b1670 / duplex -
micropayment-channels.pdf.

[4] DefiLlama Arbitrum TLV. URL: https: / /defillama.com/
chain/Arbitrum.

[5] DefiLlama Lightning TLV. URL: https://defillama.com/
protocol/lightning-network.

[6] Lightning Network In-Progress Specifications. URL:
https://github.com/lightning/bolts.

[7] Andrew Poelstra. Mimblewimble. URL: https://download.
wpsoftware . net / bitcoin / wizardry / mimblewimble . pdf.
2016-10-06 (commit e9f45ec).

[8] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning
Network: Scalable Off-Chain Instant Payments. URL:
https:// lightning.network/lightning- network- paper.pdf.
Version 0.5.9.2.

https://blockstream.com/eltoo.pdf
https://tik-old.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
https://tik-old.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
https://tik-old.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
https://defillama.com/chain/Arbitrum
https://defillama.com/chain/Arbitrum
https://defillama.com/protocol/lightning-network
https://defillama.com/protocol/lightning-network
https://github.com/lightning/bolts
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://lightning.network/lightning-network-paper.pdf

	Introduction
	Design
	Basic construction
	Channel operations
	Exclusion of peers
	Voluntary exclusion
	Forced exclusion

	Inclusion of new peers
	Cooperative closing
	Uncooperative closing

	Channel example
	Analysis
	Liveness
	Capital efficiency
	Scalability
	Transaction speed
	Storage
	Number of peers
	Liquidity
	Inter-channel scalability

	Security
	Interoperability
	Comparative analysis
	BOLT Lightning network
	Channel factories

	Trivia

